Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
478 views
in Technique[技术] by (71.8m points)

python - How to use the a k-fold cross validation in scikit with naive bayes classifier and NLTK

I have a small corpus and I want to calculate the accuracy of naive Bayes classifier using 10-fold cross validation, how can do it.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Your options are to either set this up yourself or use something like NLTK-Trainer since NLTK doesn't directly support cross-validation for machine learning algorithms.

I'd recommend probably just using another module to do this for you but if you really want to write your own code you could do something like the following.

Supposing you want 10-fold, you would have to partition your training set into 10 subsets, train on 9/10, test on the remaining 1/10, and do this for each combination of subsets (10).

Assuming your training set is in a list named training, a simple way to accomplish this would be,

num_folds = 10
subset_size = len(training)/num_folds
for i in range(num_folds):
    testing_this_round = training[i*subset_size:][:subset_size]
    training_this_round = training[:i*subset_size] + training[(i+1)*subset_size:]
    # train using training_this_round
    # evaluate against testing_this_round
    # save accuracy

# find mean accuracy over all rounds

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...