Is it possible to chain metaclasses?
I have class Model
which uses __metaclass__=ModelBase
to process its namespace dict. I'm going to inherit from it and "bind" another metaclass so it won't shade the original one.
First approach is to subclass class MyModelBase(ModelBase)
:
MyModel(Model):
__metaclass__ = MyModelBase # inherits from `ModelBase`
But is it possible just to chain them like mixins, without explicit subclassing? Something like
class MyModel(Model):
__metaclass__ = (MyMixin, super(Model).__metaclass__)
... or even better: create a MixIn that will use __metaclass__
from the direct parent of the class that uses it:
class MyModel(Model):
__metaclass__ = MyMetaMixin, # Automagically uses `Model.__metaclass__`
The reason: For more flexibility in extending existing apps, I want to create a global mechanism for hooking into the process of Model
, Form
, ... definitions in Django so it can be changed at runtime.
A common mechanism would be much better than implementing multiple metaclasses with callback mixins.
With your help I finally managed to come up to a solution: metaclass MetaProxy
.
The idea is: create a metaclass that invokes a callback to modify the namespace of the class being created, then, with the help of __new__
, mutate into a metaclass of one of the parents
#!/usr/bin/env python
#-*- coding: utf-8 -*-
# Magical metaclass
class MetaProxy(type):
""" Decorate the class being created & preserve __metaclass__ of the parent
It executes two callbacks: before & after creation of a class,
that allows you to decorate them.
Between two callbacks, it tries to locate any `__metaclass__`
in the parents (sorted in MRO).
If found — with the help of `__new__` method it
mutates to the found base metaclass.
If not found — it just instantiates the given class.
"""
@classmethod
def pre_new(cls, name, bases, attrs):
""" Decorate a class before creation """
return (name, bases, attrs)
@classmethod
def post_new(cls, newclass):
""" Decorate a class after creation """
return newclass
@classmethod
def _mrobases(cls, bases):
""" Expand tuple of base-classes ``bases`` in MRO """
mrobases = []
for base in bases:
if base is not None: # We don't like `None` :)
mrobases.extend(base.mro())
return mrobases
@classmethod
def _find_parent_metaclass(cls, mrobases):
""" Find any __metaclass__ callable in ``mrobases`` """
for base in mrobases:
if hasattr(base, '__metaclass__'):
metacls = base.__metaclass__
if metacls and not issubclass(metacls, cls): # don't call self again
return metacls#(name, bases, attrs)
# Not found: use `type`
return lambda name,bases,attrs: type.__new__(type, name, bases, attrs)
def __new__(cls, name, bases, attrs):
mrobases = cls._mrobases(bases)
name, bases, attrs = cls.pre_new(name, bases, attrs) # Decorate, pre-creation
newclass = cls._find_parent_metaclass(mrobases)(name, bases, attrs)
return cls.post_new(newclass) # Decorate, post-creation
# Testing
if __name__ == '__main__':
# Original classes. We won't touch them
class ModelMeta(type):
def __new__(cls, name, bases, attrs):
attrs['parentmeta'] = name
return super(ModelMeta, cls).__new__(cls, name, bases, attrs)
class Model(object):
__metaclass__ = ModelMeta
# Try to subclass me but don't forget about `ModelMeta`
# Decorator metaclass
class MyMeta(MetaProxy):
""" Decorate a class
Being a subclass of `MetaProxyDecorator`,
it will call base metaclasses after decorating
"""
@classmethod
def pre_new(cls, name, bases, attrs):
""" Set `washere` to classname """
attrs['washere'] = name
return super(MyMeta, cls).pre_new(name, bases, attrs)
@classmethod
def post_new(cls, newclass):
""" Append '!' to `.washere` """
newclass.washere += '!'
return super(MyMeta, cls).post_new(newclass)
# Here goes the inheritance...
class MyModel(Model):
__metaclass__ = MyMeta
a=1
class MyNewModel(MyModel):
__metaclass__ = MyMeta # Still have to declare it: __metaclass__ do not inherit
a=2
class MyNewNewModel(MyNewModel):
# Will use the original ModelMeta
a=3
class A(object):
__metaclass__ = MyMeta # No __metaclass__ in parents: just instantiate
a=4
class B(A):
pass # MyMeta is not called until specified explicitly
# Make sure we did everything right
assert MyModel.a == 1
assert MyNewModel.a == 2
assert MyNewNewModel.a == 3
assert A.a == 4
# Make sure callback() worked
assert hasattr(MyModel, 'washere')
assert hasattr(MyNewModel, 'washere')
assert hasattr(MyNewNewModel, 'washere') # inherited
assert hasattr(A, 'washere')
assert MyModel.washere == 'MyModel!'
assert MyNewModel.washere == 'MyNewModel!'
assert MyNewNewModel.washere == 'MyNewModel!' # inherited, so unchanged
assert A.washere == 'A!'
See Question&Answers more detail:
os