I'm trying to implement a class that will generate all possible unordered n-tuples or combinations given a number of elements and the size of the combination.
In other words, when calling this:
NTupleUnordered unordered_tuple_generator(3, 5, print);
unordered_tuple_generator.Start();
print() being a callback function set in the constructor.
The output should be:
{0,1,2}
{0,1,3}
{0,1,4}
{0,2,3}
{0,2,4}
{0,3,4}
{1,2,3}
{1,2,4}
{1,3,4}
{2,3,4}
This is what I have so far:
class NTupleUnordered {
public:
NTupleUnordered( int k, int n, void (*cb)(std::vector<int> const&) );
void Start();
private:
int tuple_size; //how many
int set_size; //out of how many
void (*callback)(std::vector<int> const&); //who to call when next tuple is ready
std::vector<int> tuple; //tuple is constructed here
void add_element(int pos); //recursively calls self
};
and this is the implementation of the recursive function, Start() is just a kick start function to have a cleaner interface, it only calls add_element(0);
void NTupleUnordered::add_element( int pos )
{
// base case
if(pos == tuple_size)
{
callback(tuple); // prints the current combination
tuple.pop_back(); // not really sure about this line
return;
}
for (int i = pos; i < set_size; ++i)
{
// if the item was not found in the current combination
if( std::find(tuple.begin(), tuple.end(), i) == tuple.end())
{
// add element to the current combination
tuple.push_back(i);
add_element(pos+1); // next call will loop from pos+1 to set_size and so on
}
}
}
If I wanted to generate all possible combinations of a constant N size, lets say combinations of size 3 I could do:
for (int i1 = 0; i1 < 5; ++i1)
{
for (int i2 = i1+1; i2 < 5; ++i2)
{
for (int i3 = i2+1; i3 < 5; ++i3)
{
std::cout << "{" << i1 << "," << i2 << "," << i3 << "}
";
}
}
}
If N is not a constant, you need a recursive function that imitates the above
function by executing each for-loop in it's own frame. When for-loop terminates,
program returns to the previous frame, in other words, backtracking.
I always had problems with recursion, and now I need to combine it with backtracking to generate all possible combinations. Any pointers of what am I doing wrong? What I should be doing or I am overlooking?
P.S: This is a college assignment that also includes basically doing the same thing for ordered n-tuples.
Thanks in advance!
/////////////////////////////////////////////////////////////////////////////////////////
Just wanted to follow up with the correct code just in case someone else out there is wondering the same thing.
void NTupleUnordered::add_element( int pos)
{
if(static_cast<int>(tuple.size()) == tuple_size)
{
callback(tuple);
return;
}
for (int i = pos; i < set_size; ++i)
{
// add element to the current combination
tuple.push_back(i);
add_element(i+1);
tuple.pop_back();
}
}
And for the case of ordered n-tuples:
void NTupleOrdered::add_element( int pos )
{
if(static_cast<int>(tuple.size()) == tuple_size)
{
callback(tuple);
return;
}
for (int i = pos; i < set_size; ++i)
{
// if the item was not found in the current combination
if( std::find(tuple.begin(), tuple.end(), i) == tuple.end())
{
// add element to the current combination
tuple.push_back(i);
add_element(pos);
tuple.pop_back();
}
}
}
Thank you Jason for your thorough response!
See Question&Answers more detail:
os