Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
421 views
in Technique[技术] by (71.8m points)

python - Scatter plot with a huge amount of data

I would like to use Matplotlib to generate a scatter plot with a huge amount of data (about 3 million points). Actually I've 3 vectors with the same dimension and I use to plot in the following way.

import matplotlib.pyplot as plt
import numpy as np
from numpy import *
from matplotlib import rc
import pylab
from pylab import * 
fig = plt.figure()
fig.subplots_adjust(bottom=0.2)
ax = fig.add_subplot(111)
plt.scatter(delta,vf,c=dS,alpha=0.7,cmap=cm.Paired)

Nothing special actually. But it takes too long to generate it actually (I'm working on my MacBook Pro 4 GB RAM with Python 2.7 and Matplotlib 1.0). Is there any way to improve the speed?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Unless your graphic is huge, many of those 3 million points are going to overlap. (A 400x600 image only has 240K dots...)

So the easiest thing to do would be to take a sample of say, 1000 points, from your data:

import random
delta_sample=random.sample(delta,1000)

and just plot that.

For example:

import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
import random

fig = plt.figure()
fig.subplots_adjust(bottom=0.2)
ax = fig.add_subplot(111)

N=3*10**6
delta=np.random.normal(size=N)
vf=np.random.normal(size=N)
dS=np.random.normal(size=N)

idx=random.sample(range(N),1000)

plt.scatter(delta[idx],vf[idx],c=dS[idx],alpha=0.7,cmap=cm.Paired)
plt.show()

alt text

Or, if you need to pay more attention to outliers, then perhaps you could bin your data using np.histogram, and then compose a delta_sample which has representatives from each bin.

Unfortunately, when using np.histogram I don't think there is any easy way to associate bins with individual data points. A simple, but approximate solution is to use the location of a point in or on the bin edge itself as a proxy for the points in it:

xedges=np.linspace(-10,10,100)
yedges=np.linspace(-10,10,100)
zedges=np.linspace(-10,10,10)
hist,edges=np.histogramdd((delta,vf,dS), (xedges,yedges,zedges))
xidx,yidx,zidx=np.where(hist>0)
plt.scatter(xedges[xidx],yedges[yidx],c=zedges[zidx],alpha=0.7,cmap=cm.Paired)
plt.show()

alt text


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...