There is a widely known way of locking multiple locks, which relies on choosing fixed linear ordering and aquiring locks according to this ordering.
That was proposed, for example, in the answer for "Acquire a lock on two mutexes and avoid deadlock". Especially, the solution based on address comparison seems to be quite elegant and obvious.
When I tried to check how it is actually implemented, I've found, to my surprise, that this solution in not widely used.
To quote the Kernel Docs - Unreliable Guide To Locking:
Textbooks will tell you that if you always lock in the same order, you
will never get this kind of deadlock. Practice will tell you that this
approach doesn't scale: when I create a new lock, I don't understand
enough of the kernel to figure out where in the 5000 lock hierarchy it
will fit.
PThreads doesn't seem to have such a mechanism built in at all.
Boost.Thread came up with
completely different solution, lock()
for multiple (2 to 5) mutexes is based on trying and locking as many mutexes as it is possible at the moment.
This is the fragment of the Boost.Thread source code (Boost 1.48.0, boost/thread/locks.hpp:1291):
template<typename MutexType1,typename MutexType2,typename MutexType3>
void lock(MutexType1& m1,MutexType2& m2,MutexType3& m3)
{
unsigned const lock_count=3;
unsigned lock_first=0;
for(;;)
{
switch(lock_first)
{
case 0:
lock_first=detail::lock_helper(m1,m2,m3);
if(!lock_first)
return;
break;
case 1:
lock_first=detail::lock_helper(m2,m3,m1);
if(!lock_first)
return;
lock_first=(lock_first+1)%lock_count;
break;
case 2:
lock_first=detail::lock_helper(m3,m1,m2);
if(!lock_first)
return;
lock_first=(lock_first+2)%lock_count;
break;
}
}
}
where lock_helper
returns 0
on success and number of mutexes that weren't successfully locked otherwise.
Why is this solution better, than comparing addresses or any other kind of ids? I don't see any problems with pointer comparison, which can be avoided using this kind of "blind" locking.
Are there any other ideas on how to solve this problem on a library level?
See Question&Answers more detail:
os