I have a #-separated file with three columns: the first is integer, the second looks like a float, but isn't, and the third is a string. I attempt to load this directly into python with pandas.read_csv
In [149]: d = pandas.read_csv('resources/names/fos_names.csv', sep='#', header=None, names=['int_field', 'floatlike_field', 'str_field'])
In [150]: d
Out[150]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1673 entries, 0 to 1672
Data columns:
int_field 1673 non-null values
floatlike_field 1673 non-null values
str_field 1673 non-null values
dtypes: float64(1), int64(1), object(1)
pandas
tries to be smart and automatically convert fields to a useful type. The issue is that I don't actually want it to do so (if I did, I'd used the converters
argument). How can I prevent pandas
from converting types automatically?
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…