The scipy.optimize
functions are not constructed to allow straightforward adaptation to the traveling salesman problem (TSP). For a simple solution, I recommend the 2-opt algorithm, which is a well-accepted algorithm for solving the TSP and relatively straightforward to implement. Here is my implementation of the algorithm:
import numpy as np
# Calculate the euclidian distance in n-space of the route r traversing cities c, ending at the path start.
path_distance = lambda r,c: np.sum([np.linalg.norm(c[r[p]]-c[r[p-1]]) for p in range(len(r))])
# Reverse the order of all elements from element i to element k in array r.
two_opt_swap = lambda r,i,k: np.concatenate((r[0:i],r[k:-len(r)+i-1:-1],r[k+1:len(r)]))
def two_opt(cities,improvement_threshold): # 2-opt Algorithm adapted from https://en.wikipedia.org/wiki/2-opt
route = np.arange(cities.shape[0]) # Make an array of row numbers corresponding to cities.
improvement_factor = 1 # Initialize the improvement factor.
best_distance = path_distance(route,cities) # Calculate the distance of the initial path.
while improvement_factor > improvement_threshold: # If the route is still improving, keep going!
distance_to_beat = best_distance # Record the distance at the beginning of the loop.
for swap_first in range(1,len(route)-2): # From each city except the first and last,
for swap_last in range(swap_first+1,len(route)): # to each of the cities following,
new_route = two_opt_swap(route,swap_first,swap_last) # try reversing the order of these cities
new_distance = path_distance(new_route,cities) # and check the total distance with this modification.
if new_distance < best_distance: # If the path distance is an improvement,
route = new_route # make this the accepted best route
best_distance = new_distance # and update the distance corresponding to this route.
improvement_factor = 1 - best_distance/distance_to_beat # Calculate how much the route has improved.
return route # When the route is no longer improving substantially, stop searching and return the route.
Here is an example of the function being used:
# Create a matrix of cities, with each row being a location in 2-space (function works in n-dimensions).
cities = np.random.RandomState(42).rand(70,2)
# Find a good route with 2-opt ("route" gives the order in which to travel to each city by row number.)
route = two_opt(cities,0.001)
And here is the approximated solution path shown on a plot:
import matplotlib.pyplot as plt
# Reorder the cities matrix by route order in a new matrix for plotting.
new_cities_order = np.concatenate((np.array([cities[route[i]] for i in range(len(route))]),np.array([cities[0]])))
# Plot the cities.
plt.scatter(cities[:,0],cities[:,1])
# Plot the path.
plt.plot(new_cities_order[:,0],new_cities_order[:,1])
plt.show()
# Print the route as row numbers and the total distance travelled by the path.
print("Route: " + str(route) + "
Distance: " + str(path_distance(route,cities)))
If the speed of algorithm is important to you, I recommend pre-calculating the distances and storing them in a matrix. This dramatically decreases the convergence time.
Edit: Custom Start and End Points
For a non-circular path (one which ends at a location different from where it starts), edit the path distance formula to
path_distance = lambda r,c: np.sum([np.linalg.norm(c[r[p+1]]-c[r[p]]) for p in range(len(r)-1)])
and then reorder the cities for plotting using
new_cities_order = np.array([cities[route[i]] for i in range(len(route))])
With the code as it is, the starting city is fixed as the first city in cities
, and the ending city is variable.
To make the ending city the last city in cities
, restrict the range of swappable cities by changing the range of swap_first
and swap_last
in two_opt()
with the code
for swap_first in range(1,len(route)-3):
for swap_last in range(swap_first+1,len(route)-1):
To make both the starting and ending cities variable, instead expand the range of swap_first
and swap_last
with
for swap_first in range(0,len(route)-2):
for swap_last in range(swap_first+1,len(route)):