Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
533 views
in Technique[技术] by (71.8m points)

image - Detecting circles and shots from paper target

I'm making a small project where i have to detect points scored from a given image of paper target. Something similar to TargetScan app for iPhone.

I'm using openCV for processing image and basically i have two parts for this, one is to detect circles from a target(which works pretty good with Hough Circle Transform) and the second part is to detect shots. I need some ideas how to detect those shots from a given image. Here is an example image with circle detection ON (green line for circles detected and red point for center). What algorithms from openCV can be used to detect those shoots? enter image description here

Here is another example image enter image description here

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Algo:

  1. create/clear mask for image
  2. binarize image (to black and white by some intensity threshold)
  3. process all pixels
  4. count how many pixels of the same color are there in x,y directions

    call it wx,wy

  5. detect circle,shot and mid section

    circles are thin so wx or wy should be less then thin threshold and the other one should be bigger. Shots are big so booth wx and wy must be in shot diameter range. Mid section is black and booth wx,wy above all thresholds (you can compute avg point here). Store this info into mask

  6. recolor image with mask info

  7. compute center and radiuses of the circles from found points

    center is avg point of mid section area, now process all the green points and compute radius for it. Do histogram for all found radiuses and sort it by count descending. The count should be consistent with 2*PI*r if not ignore such points.

  8. group shot pixels together

    so segmentate or flood fill recolor each hit to avoid multiple accounting of single shot

I coded the #1..#6 for fun in C++ here is the code:

    picture pic0,pic1,pic2;
        // pic0 - source
        // pic1 - output
        // pic2 - mask
    int x,y,i,n,wx,wy;
    int r0=3;           // thin curve wide treshod [pixels]
    int r1a=15;         // shot diameter min treshod [pixels]
    int r1b=30;         // shot diameter max treshod [pixels]
    int x0,y0;          // avg point == center
    // init output as source image but in grayscale intensity only
    pic1=pic0;
    pic1.rgb2i();
    // init mask (size of source image)
    pic2.resize(pic0.xs,pic0.ys);
    pic2.clear(0);
    // binarize image and convert back to RGB
    for (y=r0;y<pic1.ys-r0-1;y++)
     for (x=r0;x<pic1.xs-r0-1;x++)
      if (pic1.p[y][x].dd<=500) // Black/White treshold <0,765>
           pic1.p[y][x].dd=0x00000000; // Black in RGB
      else pic1.p[y][x].dd=0x00FFFFFF; // White in RGB
    // process pixels
    x0=0; y0=0; n=0;
    for (y=r1b;y<pic1.ys-r1b-1;y++)
     for (x=r1b;x<pic1.xs-r1b-1;x++)
        {
        wy=1;   // count the same color pixels in column
        for (i=1;i<=r1b;i++) if (pic1.p[y-i][x].dd==pic1.p[y][x].dd) wy++; else break;
        for (i=1;i<=r1b;i++) if (pic1.p[y+i][x].dd==pic1.p[y][x].dd) wy++; else break;
        wx=1;   // count the same color pixels in line
        for (i=1;i<=r1b;i++) if (pic1.p[y][x-i].dd==pic1.p[y][x].dd) wx++; else break;
        for (i=1;i<=r1b;i++) if (pic1.p[y][x+i].dd==pic1.p[y][x].dd) wx++; else break;
        if ((wx<r0)||(wy<r0))       // if thin
         if ((wx>=r0)||(wy>=r0))    // but still line
            {
            pic2.p[y][x].dd=1;      // thin line
            }
        if (pic1.p[y][x].dd==0)     // black
         if ((wx>=r0)&&(wy>=r0))    // and thick in both axises
            {
            pic2.p[y][x].dd=2;      // middle section
            x0+=x; y0+=y; n++;
            }
        if (pic1.p[y][x].dd)        // white (background color)
        if ((wx>r1a)&&(wy>r1a))     // size in range of shot
         if ((wx<r1b)&&(wy<r1b))
            {
            pic2.p[y][x].dd=3;      // shot
            }
        }
     if (n) { x0/=n; y0/=n; }

    // add mask data (recolor) to output image
//  if (0)
    for (y=0;y<pic1.ys;y++)
     for (x=0;x<pic1.xs;x++)
        {
        if (pic2.p[y][x].dd==1) pic1.p[y][x].dd=0x0000FF00; // green thin line
        if (pic2.p[y][x].dd==2) pic1.p[y][x].dd=0x000000FF; // blue midle section
        if (pic2.p[y][x].dd==3) pic1.p[y][x].dd=0x00FF0000; // red shots
        }

    // Center cross
    i=25;
    pic1.bmp->Canvas->Pen->Color=0x0000FF;
    pic1.bmp->Canvas->MoveTo(x0-i,y0);
    pic1.bmp->Canvas->LineTo(x0+i,y0);
    pic1.bmp->Canvas->MoveTo(x0,y0-i);
    pic1.bmp->Canvas->LineTo(x0,y0+i);

I use my own picture class for images so some members are:


xs,ys size of image in pixels
p[y][x].dd is pixel at (x,y) position as 32 bit integer type
clear(color) - clears entire image
resize(xs,ys) - resizes image to new resolution

This is the recolored result

example

  • green - thin circles
  • blue mid section
  • red cross (center of circles)
  • red - shots

as you can see it needs the further processing from bullets #7,#8 and also your image has no shot outside mid section so may be it will need some tweak for shot detection outside mid section too

[edit1] radiuses

// create & clear radius histogram
n=xs; if (n<ys) n=ys;
int *hist=new int[n];
for (i=0;i<n;i++) hist[i]=0;
// compute histogram
for (y=0;y<pic2.ys;y++)
 for (x=0;x<pic2.xs;x++)
  if (pic2.p[y][x].dd==1)   // thin pixels
    {
    i=sqrt(((x-x0)*(x-x0))+((y-y0)*(y-y0)));
    hist[i]++;
    }
// merge neigbour radiuses
for (i=0;i<n;i++)
 if (hist[i])
    {
    for (x=i;x<n;x++) if (!hist[x]) break;
    for (wx=0,y=i;y<x;y++) { wx+=hist[y]; hist[y]=0; }
    hist[(i+x-1)>>1]=wx; i=x-1;
    }
// draw the valid circles
pic1.bmp->Canvas->Pen->Color=0xFF00FF;  // magenta
pic1.bmp->Canvas->Pen->Width=r0;
pic1.bmp->Canvas->Brush->Style=bsClear;
for (i=0;i<n;i++)
 if (hist[i])
    {
    float a=float(hist[i])/(2.0*M_PI*float(i));
    if ((a>=0.3)&&(a<=2.1))
     pic1.bmp->Canvas->Ellipse(x0-i,y0-i,x0+i,y0+i);
    }
pic1.bmp->Canvas->Brush->Style=bsSolid;
pic1.bmp->Canvas->Pen->Width=1;
delete[] hist;

radius circles

detected circles are in Magenta ... pretty good I think. The mid section screw it a bit. You can compute average radius step and interpolate the missing circles ...


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...