Possibility 1
I assume, that you want a 2dimensional graph, where distances between nodes positions are the same as provided by your table.
In python, you can use networkx
for such applications. In general there are manymethods of doing so, remember, that all of them are just approximations (as in general it is not possible to create a 2 dimensional representataion of points given their pairwise distances) They are some kind of stress-minimizatin (or energy-minimization) approximations, trying to find the "reasonable" representation with similar distances as those provided.
As an example you can consider a four point example (with correct, discrete metric applied):
p1 p2 p3 p4
---------------
p1 0 1 1 1
p2 1 0 1 1
p3 1 1 0 1
p4 1 1 1 0
In general, drawing actual "graph" is redundant, as you have fully connected one (each pair of nodes is connected) so it should be sufficient to draw just points.
Python example
import networkx as nx
import numpy as np
import string
dt = [('len', float)]
A = np.array([(0, 0.3, 0.4, 0.7),
(0.3, 0, 0.9, 0.2),
(0.4, 0.9, 0, 0.1),
(0.7, 0.2, 0.1, 0)
])*10
A = A.view(dt)
G = nx.from_numpy_matrix(A)
G = nx.relabel_nodes(G, dict(zip(range(len(G.nodes())),string.ascii_uppercase)))
G = nx.to_agraph(G)
G.node_attr.update(color="red", style="filled")
G.edge_attr.update(color="blue", width="2.0")
G.draw('distances.png', format='png', prog='neato')
In R you can try multidimensional scaling
# Classical MDS
# N rows (objects) x p columns (variables)
# each row identified by a unique row name
d <- dist(mydata) # euclidean distances between the rows
fit <- cmdscale(d,eig=TRUE, k=2) # k is the number of dim
fit # view results
# plot solution
x <- fit$points[,1]
y <- fit$points[,2]
plot(x, y, xlab="Coordinate 1", ylab="Coordinate 2",
main="Metric MDS", type="n")
text(x, y, labels = row.names(mydata), cex=.7)
Possibility 2
You just want to draw a graph with labeled edges
Again, networkx
can help:
import networkx as nx
# Create a graph
G = nx.Graph()
# distances
D = [ [0, 1], [1, 0] ]
labels = {}
for n in range(len(D)):
for m in range(len(D)-(n+1)):
G.add_edge(n,n+m+1)
labels[ (n,n+m+1) ] = str(D[n][n+m+1])
pos=nx.spring_layout(G)
nx.draw(G, pos)
nx.draw_networkx_edge_labels(G,pos,edge_labels=labels,font_size=30)
import pylab as plt
plt.show()