Immutability is an area where C# still has room to improve. While creating simple immutable types with readonly
properties is possible, once you need more sophisticated control over when type are mutable you start running into obstacles.
There are three choices that you have, depending on how strongly you need to "enforce" read-only behavior:
Use a read-only flag in your type (like you're doing) and let the caller be responsible for not attempting to change properties on the type - if a write attempt is made, throw an exception.
Create a read-only interface and have your type implement it. This way you can pass the type via that interface to code that should only perform reads.
Create a wrapper class that aggregates your type and only exposes read operations.
The first option is often the easiest, in that it can require less refactoring of existing code, but offers the least opportunity for the author of a type to inform consumers when an instance is immutable vs when it is not. This option also offers the least support from the compiler in detecting inappropriate use - and relegates error detection to runtime.
The second option is convenient, since implementing an interface is possible without much refactoring effort. Unfortunately, callers can still cast to the underlying type and attempt to write against it. Often, this option is combined with a read-only flag to ensure the immutability is not violated.
The third option is the strongest, as far as enforcement goes, but it can result in duplication of code and is more of a refactoring effort. Often, it's useful to combine option 2 and 3, to make the relationship between the read-only wrapper and the mutable type polymorphic.
Personally, I tend to perfer the third option when writing new code where I expect to need to enforce immutability. I like the fact that it's impossible to "cast-away" the immutable wrapper, and it often allows you to avoid writing messy if-read-only-throw-exception checks into every setter.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…