I am dealing with highly imbalanced data set and my idea is to obtain values of feature weights from my libSVM model. As for now I am OK with the linear kernel, where I can obtain feature weights, but when I am using rbf
or poly
, I fail to reach my objective.
Here I am using sklearn
for my model and it's easy to obtain feature weights for linear kernel using .coef_
. Can anyone help me to do same thing for rbf
or poly
? What I've tried to do so far is given below:
svr = SVC(C=10, cache_size=200, class_weight='auto', coef0=0.0, degree=3.0, gamma=0.12,kernel='rbf', max_iter=-1, probability=True, random_state=0,shrinking=True, tol=0.001, verbose=False)
clf = svr.fit(data_train,target_train)
print clf.coef_
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…