This answer looks at the problem from a different point of view:
- Single board configurations are represented using the compound structure
board/9
.
- Configurations that are equal up to sliding a single piece are connected by relation
m/2
.
So let's define m/2
!
m(board(' ',B,C,D,E,F,G,H,I), board(D, B ,C,' ',E,F,G,H,I)).
m(board(' ',B,C,D,E,F,G,H,I), board(B,' ',C, D ,E,F,G,H,I)).
m(board(A,' ',C,D,E,F,G,H,I), board(' ',A, C , D, E ,F,G,H,I)).
m(board(A,' ',C,D,E,F,G,H,I), board( A ,C,' ', D, E ,F,G,H,I)).
m(board(A,' ',C,D,E,F,G,H,I), board( A ,E, C , D,' ',F,G,H,I)).
m(board(A,B,' ',D,E,F,G,H,I), board(A,' ',B,D,E, F ,G,H,I)).
m(board(A,B,' ',D,E,F,G,H,I), board(A, B ,F,D,E,' ',G,H,I)).
m(board(A,B,C,' ',E,F,G,H,I), board(' ',B,C,A, E ,F, G ,H,I)).
m(board(A,B,C,' ',E,F,G,H,I), board( A ,B,C,E,' ',F, G ,H,I)).
m(board(A,B,C,' ',E,F,G,H,I), board( A ,B,C,G, E ,F,' ',H,I)).
m(board(A,B,C,D,' ',F,G,H,I), board(A, B ,C,' ',D, F ,G, H ,I)).
m(board(A,B,C,D,' ',F,G,H,I), board(A,' ',C, D ,B, F ,G, H ,I)).
m(board(A,B,C,D,' ',F,G,H,I), board(A, B ,C, D ,F,' ',G, H ,I)).
m(board(A,B,C,D,' ',F,G,H,I), board(A, B ,C, D ,H, F ,G,' ',I)).
m(board(A,B,C,D,E,' ',G,H,I), board(A,B,' ',D, E ,C,G,H, I )).
m(board(A,B,C,D,E,' ',G,H,I), board(A,B, C ,D,' ',E,G,H, I )).
m(board(A,B,C,D,E,' ',G,H,I), board(A,B, C ,D, E ,I,G,H,' ')).
m(board(A,B,C,D,E,F,' ',H,I), board(A,B,C,' ',E,F,D, H ,I)).
m(board(A,B,C,D,E,F,' ',H,I), board(A,B,C, D ,E,F,H,' ',I)).
m(board(A,B,C,D,E,F,G,' ',I), board(A,B,C,D,' ',F, G ,E, I )).
m(board(A,B,C,D,E,F,G,' ',I), board(A,B,C,D, E ,F,' ',G, I )).
m(board(A,B,C,D,E,F,G,' ',I), board(A,B,C,D, E ,F, G,I,' ')).
m(board(A,B,C,D,E,F,G,H,' '), board(A,B,C,D,E,' ',G, H ,F)).
m(board(A,B,C,D,E,F,G,H,' '), board(A,B,C,D,E, F ,G,' ',H)).
Almost done!
To connect the steps, we use the meta-predicate path/4 together
with length/2
for performing iterative deepening.
The following problem instances are from @CapelliC's answer:
?- length(Path,N), path(m,Path,/* from */ board(1,' ',3,5,2,6,4,7, 8 ),
/* to */ board(1, 2 ,3,4,5,6,7,8,' ')).
N = 6, Path = [board(1,' ',3,5,2,6,4,7,8), board(1,2,3,5,' ',6,4,7,8),
board(1,2,3,' ',5,6,4,7,8), board(1,2,3,4,5,6,' ',7,8),
board(1,2,3,4,5,6,7,' ',8), board(1,2,3,4,5,6,7,8,' ')] ? ;
N = 12, Path = [board(1,' ',3,5,2,6,4,7,8), board(1,2,3,5,' ',6,4,7,8),
board(1,2,3,5,7,6,4,' ',8), board(1,2,3,5,7,6,' ',4,8),
board(1,2,3,' ',7,6,5,4,8), board(1,2,3,7,' ',6,5,4,8),
board(1,2,3,7,4,6,5,' ',8), board(1,2,3,7,4,6,' ',5,8),
board(1,2,3,' ',4,6,7,5,8), board(1,2,3,4,' ',6,7,5,8),
board(1,2,3,4,5,6,7,' ',8), board(1,2,3,4,5,6,7,8,' ')] ? ;
...
?- length(Path,N), path(m,Path,/* from */ board(8,7,4,6,' ',5,3,2, 1 ),
/* to */ board(1,2,3,4, 5 ,6,7,8,' ')).
N = 27, Path = [board(8,7,4,6,' ',5,3,2,1), board(8,7,4,6,5,' ',3,2,1),
board(8,7,4,6,5,1,3,2,' '), board(8,7,4,6,5,1,3,' ',2),
board(8,7,4,6,5,1,' ',3,2), board(8,7,4,' ',5,1,6,3,2),
board(' ',7,4,8,5,1,6,3,2), board(7,' ',4,8,5,1,6,3,2),
board(7,4,' ',8,5,1,6,3,2), board(7,4,1,8,5,' ',6,3,2),
board(7,4,1,8,5,2,6,3,' '), board(7,4,1,8,5,2,6,' ',3),
board(7,4,1,8,5,2,' ',6,3), board(7,4,1,' ',5,2,8,6,3),
board(' ',4,1,7,5,2,8,6,3), board(4,' ',1,7,5,2,8,6,3),
board(4,1,' ',7,5,2,8,6,3), board(4,1,2,7,5,' ',8,6,3),
board(4,1,2,7,5,3,8,6,' '), board(4,1,2,7,5,3,8,' ',6),
board(4,1,2,7,5,3,' ',8,6), board(4,1,2,' ',5,3,7,8,6),
board(' ',1,2,4,5,3,7,8,6), board(1,' ',2,4,5,3,7,8,6),
board(1,2,' ',4,5,3,7,8,6), board(1,2,3,4,5,' ',7,8,6),
board(1,2,3,4,5,6,7,8,' ')] ? ;
N = 29, Path = [...] ? ;
...