Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
1.3k views
in Technique[技术] by (71.8m points)

haskell - Are there contravariant monads?

Functors can be covariant and contravariant. Can this covariant/contravariant duality also be applied to monads?

Something like:

class Monad m where
  return :: a -> m a
  (>>=) :: m a -> (a -> m b) -> m b    

class ContraMonad m where
  return :: a -> m a
  contrabind :: m a -> (b -> m a) -> m b

Does ContraMonad class make sense? Any examples?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Well, of course, it's possible to define it, but I doubt it would be of any use.

There is a popular saying that "monad is just a monoid in a category of endofunctors". What it means is, first of all, that we have a category of endofunctors (meaning, (covariant) functors from some category to itself), and what's more, we have some multiplication on this endofunctors (in this case — composition). And then monad fits into some general framework that we don't have to worry about right now. The point is, there is no "multiplication" of contravariant functors. Composition of two covariant functors is again a covariant functor; but composition of two contravariant functors is not a contravariant functor (rather it's a covariant functor, so, a totally different beast).

So, "contravariant monads" do not really make sense.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...