Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
352 views
in Technique[技术] by (71.8m points)

python - numpy on multicore hardware

What's the state of the art with regards to getting numpy to use mutliple cores (on Intel hardware) for things like inner and outer vector products, vector-matrix multiplications etc?

I am happy to rebuild numpy if necessary, but at this point I am looking at ways to speed things up without changing my code.

For reference, my show_config() is as follows, and I've never observed numpy to use more than one core:

atlas_threads_info:
    libraries = ['lapack', 'ptf77blas', 'ptcblas', 'atlas']
    library_dirs = ['/usr/local/atlas-3.9.16/lib']
    language = f77
    include_dirs = ['/usr/local/atlas-3.9.16/include']

blas_opt_info:
    libraries = ['ptf77blas', 'ptcblas', 'atlas']
    library_dirs = ['/usr/local/atlas-3.9.16/lib']
    define_macros = [('ATLAS_INFO', '""3.9.16""')]
    language = c
    include_dirs = ['/usr/local/atlas-3.9.16/include']

atlas_blas_threads_info:
    libraries = ['ptf77blas', 'ptcblas', 'atlas']
    library_dirs = ['/usr/local/atlas-3.9.16/lib']
    language = c
    include_dirs = ['/usr/local/atlas-3.9.16/include']

lapack_opt_info:
    libraries = ['lapack', 'ptf77blas', 'ptcblas', 'atlas']
    library_dirs = ['/usr/local/atlas-3.9.16/lib']
    define_macros = [('ATLAS_INFO', '""3.9.16""')]
    language = f77
    include_dirs = ['/usr/local/atlas-3.9.16/include']

lapack_mkl_info:
  NOT AVAILABLE

blas_mkl_info:
  NOT AVAILABLE

mkl_info:
  NOT AVAILABLE
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

You should probably start by checking whether the Atlas build that numpy is using has been built with multi-threading. You can build and run this to inspect the Atlas configuration (straight from the Atlas FAQ):

main()
/*
 * Compile, link and run with something like:
 *    gcc -o xprint_buildinfo -L[ATLAS lib dir] -latlas ; ./xprint_buildinfo
 * if link fails, you are using ATLAS version older than 3.3.6.
 */
{
   void ATL_buildinfo(void);
   ATL_buildinfo();
   exit(0);
}

If you have don't have a multithreaded version of Atlas: "there's your problem". If it is multithreaded, then you need to exercise one of the multithreaded BLAS3 routines (probably dgemm), with a suitably large matrix-matrix product and see whether threading is used. I think I am right in saying that neither BLAS 2 and BLAS 1 routines in Atlas support multithreading (and with good reason because there is no performance advantage except at truly enormous problem sizes).


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...