Every time I run LSTM network with Keras in jupyter notebook, I got a different result, and I have googled a lot, and I have tried some different solutions, but none of they are work, here are some solutions I tried:
set numpy random seed
random_seed=2017
from numpy.random import seed
seed(random_seed)
set tensorflow random seed
from tensorflow import set_random_seed
set_random_seed(random_seed)
set build-in random seed
import random
random.seed(random_seed)
set PYTHONHASHSEED
import os
os.environ['PYTHONHASHSEED'] = '0'
add PYTHONHASHSEED in jupyter notebook kernel.json
{
"language": "python",
"display_name": "Python 3",
"env": {"PYTHONHASHSEED": "0"},
"argv": [
"python",
"-m",
"ipykernel_launcher",
"-f",
"{connection_file}"
]
}
and the version of my env is:
Keras: 2.0.6
Tensorflow: 1.2.1
CPU or GPU: CPU
and this is my code:
model = Sequential()
model.add(LSTM(16, input_shape=(time_steps,nb_features), return_sequences=True))
model.add(LSTM(16, input_shape=(time_steps,nb_features), return_sequences=False))
model.add(Dense(8,activation='relu'))
model.add(Dense(1,activation='linear'))
model.compile(loss='mse',optimizer='adam')
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…