Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
280 views
in Technique[技术] by (71.8m points)

python - Sorting array of objects by row using custom dtype

I am attempting to sort a some arrays lexicographically by rows. The integer case works perfectly:

>>> arr = np.random.choice(10, size=(5, 3))
>>> arr
array([[1, 0, 2],
       [8, 0, 8],
       [1, 8, 4],
       [1, 3, 9],
       [6, 1, 8]])
>>> np.ndarray(arr.shape[0], dtype=[('', arr.dtype, arr.shape[1])], buffer=arr).sort()
>>> arr
array([[1, 0, 2],
       [1, 3, 9],
       [1, 8, 4],
       [6, 1, 8],
       [8, 0, 8]])

I can also do the sorting with

np.ndarray(arr.shape[0], dtype=[('', arr.dtype)] * arr.shape[1], buffer=arr).sort()

In both cases, the results are the same. However, that is not the case for object arrays:

>>> selection = np.array(list(string.ascii_lowercase), dtype=object)
>>> arr = np.random.choice(selection, size=(5, 3))
>>> arr
array([['t', 'p', 'g'],
       ['n', 's', 'd'],
       ['g', 'g', 'n'],
       ['g', 'h', 'o'],
       ['f', 'j', 'x']], dtype=object)
>>> np.ndarray(arr.shape[0], dtype=[('', arr.dtype, arr.shape[1])], buffer=arr).sort()
>>> arr
array([['t', 'p', 'g'],
       ['n', 's', 'd'],
       ['g', 'h', 'o'],
       ['g', 'g', 'n'],
       ['f', 'j', 'x']], dtype=object)
>>> np.ndarray(arr.shape[0], dtype=[('', arr.dtype)] * arr.shape[1], buffer=arr).sort()
>>> arr
array([['f', 'j', 'x'],
       ['g', 'g', 'n'],
       ['g', 'h', 'o'],
       ['n', 's', 'd'],
       ['t', 'p', 'g']], dtype=object)

Clearly only the case with dtype=[('', arr.dtype)] * arr.shape[1] is working properly. Why is that? What is different about dtype=[('', arr.dtype, arr.shape[1])]? The sort is clearly doing something, but the order appears to be nonsensical at first glance. Is it using pointers as the sort keys?

For what it's worth, np.searchsorted appears to be doing the same sort of comparison as np.sort, as expected.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

This actually works fine

In [16]: selection = np.array(list(string.ascii_lowercase))

In [17]: arr = np.random.choice(selection, size=(5, 3))

In [18]: arr
Out[18]:
array([['x', 'l', 'i'],
       ['k', 'h', 'b'],
       ['y', 'h', 'w'],
       ['i', 'u', 't'],
       ['v', 'u', 'k']], dtype='<U1')

In [19]: np.ndarray(arr.shape[0], dtype=[('', arr.dtype, arr.shape[1])], buffer=arr).sort()

In [20]: arr
Out[20]:
array([['i', 'u', 't'],
       ['k', 'h', 'b'],
       ['v', 'u', 'k'],
       ['x', 'l', 'i'],
       ['y', 'h', 'w']], dtype='<U1')

The issue is with using dtype object for selection.

In [21]: selection = np.array(list(string.ascii_lowercase), dtype = object)

In [22]: arr = np.random.choice(selection, size=(5, 3))

In [23]: arr
Out[23]:
array([['b', 'h', 'e'],
       ['o', 'z', 'c'],
       ['g', 'v', 'z'],
       ['r', 'n', 'k'],
       ['a', 'h', 't']], dtype=object)

In [24]: np.ndarray(arr.shape[0], dtype=[('', arr.dtype, arr.shape[1])], buffer=arr).sort()

In [25]: arr
Out[25]:
array([['o', 'z', 'c'],
       ['b', 'h', 'e'],
       ['r', 'n', 'k'],
       ['a', 'h', 't'],
       ['g', 'v', 'z']], dtype=object)

Note dtype = 'O' means numpy type of python object see here for more, which I don't think provides a comparison operator.

The two types that you've provided, normally, should still work.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...