• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

mickcrosse/mTRF-Toolbox: A MATLAB Package for Relating Neural Signals to Continu ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

mickcrosse/mTRF-Toolbox

开源软件地址(OpenSource Url):

https://github.com/mickcrosse/mTRF-Toolbox

开源编程语言(OpenSource Language):

MATLAB 100.0%

开源软件介绍(OpenSource Introduction):

License View mTRF-Toolbox on File Exchange Download mTRF-Toolbox

mTRF-Toolbox is a MATLAB package for modelling multivariate stimulus-response data, suitable for neurophysiological data such as MEG, EEG, sEEG, ECoG and EMG. It can be used to model the functional relationship between neuronal populations and dynamic sensory inputs such as natural scenes and sounds, or build neural decoders for reconstructing stimulus features and developing real-time applications such as brain-computer interfaces (BCIs).

Installation

Download and unzip mTRF-Toolbox to a local directory, then in the MATLAB/GNU Octave command window enter:

addpath 'directory/mTRF-Toolbox'
savepath

Documentation

For documentation and citation, please refer to the mTRF-Toolbox paper.

For usage, please see examples and example M-files.

mTRF Modelling Framework

mTRF-Toolbox provides a complementary forward/backward quantitative modelling framework. A forward model, known as a temporal response function or temporal receptive field (TRF), describes how sensory information is encoded in neuronal activity. Multivariate stimulus features such as spatio- or spectro-temporal representations, as well as categorical features such as phonetic or semantic embeddings, can be used as inputs to the model. TRFs can be subjected to conventional time-frequency/source analysis techniques or used to predict the neural responses to an independent set of stimuli. mTRF-Toolbox provides an efficient cross-validation procedure for hyperparameter optimization.

A backward model, known as a neural decoder, reverses the direction of causality between stimulus and response. Neural decoders can be used to reconstruct stimulus features from information encoded explicitly or implicitly in neuronal activity, or decode higher-order cognitive processes such as top-down attention. The mTRF modelling framework provides a basic machine learning platform for real-time BCI applications such as stimulus reconstruction/synthesis and auditory attention decoding (AAD).

Contents

Fitting encoding/decoding models

  • mTRFcrossval() - performs efficient leave-one-out cross-validation
  • mTRFtrain() - fits an encoding/decoding model (TRF/STRF estimation)
  • mTRFtransform() - transforms a decoding model into an encoding model
  • mTRFpredict() - predicts the output of an encoding/decoding model
  • mTRFevaluate() - evaluates the accuracy and error of a models prediction

Decoding attention and multisensory integration

  • mTRFattncrossval() - cross-validation for attention decoder optimization
  • mTRFattnevaluate() - evaluates the accuracy and modulation index of an attention decoder
  • mTRFmulticrossval() - cross-validation for additive multisensory model optimization
  • mTRFmultitrain() - fits an additive multisensory model (TRF/STRF estimation)

Feature engineering

  • mTRFenvelope() - computes the temporal envelope of an audio signal
  • mTRFresample() - resamples and smooths temporal features
  • lagGen() - generates time-lagged input features of multivariate data

Examples

TRF/STRF estimation

Here, we estimate a 16-channel spectro-temporal response function (STRF) from 2 minutes of EEG data recorded while a human participant listened to natural speech. To map in the forward direction (encoding model), we set the direction of causality to 1. To capture the entire STRF timecourse, the time lags are computed between -100 and 400 ms. The regularization parameter is set to 0.1 to reduce overfitting to noise.

% Load example speech dataset
load('mTRF-Toolbox/data/speech_data.mat','stim','resp','fs','factor');       

% Estimate STRF model weights
model = mTRFtrain(stim,resp*factor,fs,1,-100,400,0.1);

We compute the broadband TRF by averaging the STRF model across frequency channels and the global field power (GFP) by taking the standard deviation across EEG channels, and plot them as a function of time lags. This example can also be generated using plot_speech_STRF and plot_speech_TRF.

% Plot STRF
figure
subplot(2,2,1), mTRFplot(model,'mtrf','all',85,[-50,350]);
title('Speech STRF (Fz)'), ylabel('Frequency band'), xlabel('')

% Plot GFP
subplot(2,2,2), mTRFplot(model,'mgfp','all','all',[-50,350]);
title('Global Field Power'), xlabel('')

% Plot TRF
subplot(2,2,3), mTRFplot(model,'trf','all',85,[-50,350]);
title('Speech TRF (Fz)'), ylabel('Amplitude (a.u.)')

% Plot GFP
subplot(2,2,4), mTRFplot(model,'gfp','all','all',[-50,350]);
title('Global Field Power')

Stimulus reconstruction

Here, we build a neural decoder that can reconstruct the envelope of the speech stimulus heard by the EEG participant. First, we downsample the data and partition it into 6 equal segments for training (segments 2 to 6) and testing (segment 1).

% Load data
load('mTRF-Toolbox/data/speech_data.mat','stim','resp','fs');

% Normalize and downsample data
stim = resample(sum(stim,2),64,fs);
resp = resample(resp/std(resp(:)),64,fs);
fs = 64;

% Partition data into training/test sets
nfold = 6; testTrial = 1;
[strain,rtrain,stest,rtest] = mTRFpartition(stim,resp,nfold,testTrial);

To optimize the decoders ability to predict stimulus features from new EEG data, we tune the regularization parameter using an efficient leave-one-out cross-validation (CV) procedure.

% Model hyperparameters
Dir = -1; % direction of causality
tmin = 0; % minimum time lag (ms)
tmax = 250; % maximum time lag (ms)
lambda = 10.^(-6:2:6); % regularization parameters

% Run efficient cross-validation
cv = mTRFcrossval(strain,rtrain,fs,Dir,tmin,tmax,lambda,'zeropad',0,'fast',1);

Based on the CV results, we train our model using the optimal regularization value and test it on the held-out test set. Model performance is evaluated by measuring the correlation between the original and predicted stimulus.

% Find optimal regularization value
[rmax,idx] = max(mean(cv.r));

% Train model
model = mTRFtrain(strain,rtrain,fs,Dir,tmin,tmax,lambda(idx),'zeropad',0);

% Test model
[pred,test] = mTRFpredict(stest,rtest,model,'zeropad',0);

We plot the CV metrics as a function of regularization and the test results of the final model. This example can also be generated using stimulus_reconstruction.

% Plot CV accuracy
figure
subplot(2,2,1), errorbar(1:numel(lambda),mean(cv.r),std(cv.r)/sqrt(nfold-1),'linewidth',2)
set(gca,'xtick',1:nlambda,'xticklabel',-6:2:6), xlim([0,numel(lambda)+1]), axis square, grid on
title('CV Accuracy'), xlabel('Regularization (1\times10^\lambda)'), ylabel('Correlation')

% Plot CV error
subplot(2,2,2), errorbar(1:numel(lambda),mean(cv.err),std(cv.err)/sqrt(nfold-1),'linewidth',2)
set(gca,'xtick',1:nlambda,'xticklabel',-6:2:6), xlim([0,numel(lambda)+1]), axis square, grid on
title('CV Error'), xlabel('Regularization (1\times10^\lambda)'), ylabel('MSE')

% Plot reconstruction
subplot(2,2,3), plot((1:length(stest))/fs,stest,'linewidth',2), hold on
plot((1:length(pred))/fs,pred,'linewidth',2), hold off, xlim([0,10]), axis square, grid on
title('Reconstruction'), xlabel('Time (s)'), ylabel('Amplitude (a.u.)'), legend('Orig','Pred')

% Plot test accuracy
subplot(2,2,4), bar(1,rmax), hold on, bar(2,test.r), hold off
set(gca,'xtick',1:2,'xticklabel',{'Val.','Test'}), axis square, grid on
title('Model Performance'), xlabel('Dataset'), ylabel('Correlation')

Single-lag decoder analysis

Here, we evaluate the contribution of individual time lags towards stimulus reconstruction using a single-lag decoder analysis. First, we downsample the data and partition it into 5 equal segments.

% Load data
load('mTRF-Toolbox/data/speech_data.mat','stim','resp','fs');

% Normalize and downsample data
stim = resample(sum(stim,2),64,fs);
resp = resample(resp/std(resp(:)),64,fs);
fs = 64;

% Generate training/test sets
nfold = 10;
[strain,rtrain] = mTRFpartition(stim,resp,nfold);

We run a leave-one-out cross-validation to test a series of single-lag decoders over the range 0 to 1000 ms using a pre-tuned regularization parameter.

% Run single-lag cross-validation
[stats,t] = mTRFcrossval(strain,rtrain,fs,-1,0,1e3,10.^-2,'type','single','zeropad',0);

% Compute mean and variance
macc = squeeze(mean(stats.r))'; vacc = squeeze(var(stats.r))';
merr = squeeze(mean(stats.err))'; verr = squeeze(var(stats.err))';

% Compute variance bound
xacc = [-fliplr(t),-t]; yacc = [fliplr(macc-sqrt(vacc/nfold)),macc+sqrt(vacc/nfold)];
xerr = [-fliplr(t),-t]; yerr = [fliplr(merr-sqrt(verr/nfold)),merr+sqrt(verr/nfold)];

We plot the reconstruction accuracy and error as a function of time lags. This example can also be generated using single_lag_analysis.

% Plot accuracy
figure
subplot(1,2,1), h = fill(xacc,yacc,'b','edgecolor','none'); hold on
set(h,'facealpha',0.2), xlim([tmin,tmax]), axis square, grid on
plot(-fliplr(t),fliplr(macc),'linewidth',2), hold off
title('Reconstruction Accuracy'), xlabel('Time lag (ms)'), ylabel('Correlation')

% Plot error
subplot(1,2,2)
h = fill(xerr,yerr,'b','edgecolor','none'); hold on
set(h,'facealpha',0.2), xlim([tmin,tmax]), axis square, grid on
plot(-fliplr(t),fliplr(merr),'linewidth',2), hold off
title('Reconstruction Error'), xlabel('Time lag (ms)'), ylabel('MSE')

License

BSD 3-Clause License




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap