Use select
df
.select(
df.columns.map(c => col(c).as(c)) ++
diff_set.map(c => lit(null).cast("string").as(c)):_*
)
.show(false)
Use foldLeft
scala> df.show(false)
+---+----------+
|Id |Name |
+---+----------+
|1 |James |
|2 |Michael |
|3 |Robert |
|4 |Washington|
|5 |Jefferson |
+---+----------+
scala> val diff_set = Seq("col1", "col2", "col3", "col4", "col5", "col6", "col7", "col8", "col9", "col10", "col11", "col12", "col13", "col14", "col15", "col16", "col17", "col18", "col19", "col20", "col21", "col22").toSet
scala>
diff_set
.foldLeft(df)((ddf,c) =>
ddf
.withColumn(c,lit(null).cast("string"))
)
.show(false)
+---+----------+----+----+----+-----+----+-----+----+-----+-----+-----+-----+----+-----+----+----+-----+-----+-----+-----+-----+----+-----+
|Id |Name |col7|col8|col3|col17|col6|col20|col2|col14|col16|col21|col15|col9|col10|col5|col1|col13|col19|col11|col22|col18|col4|col12|
+---+----------+----+----+----+-----+----+-----+----+-----+-----+-----+-----+----+-----+----+----+-----+-----+-----+-----+-----+----+-----+
|1 |James |null|null|null|null |null|null |null|null |null |null |null |null|null |null|null|null |null |null |null |null |null|null |
|2 |Michael |null|null|null|null |null|null |null|null |null |null |null |null|null |null|null|null |null |null |null |null |null|null |
|3 |Robert |null|null|null|null |null|null |null|null |null |null |null |null|null |null|null|null |null |null |null |null |null|null |
|4 |Washington|null|null|null|null |null|null |null|null |null |null |null |null|null |null|null|null |null |null |null |null |null|null |
|5 |Jefferson |null|null|null|null |null|null |null|null |null |null |null |null|null |null|null|null |null |null |null |null |null|null |
+---+----------+----+----+----+-----+----+-----+----+-----+-----+-----+-----+----+-----+----+----+-----+-----+-----+-----+-----+----+-----+
Comparison
Using foldLeft
for 1000000
records - Time taken: 18017 ms
spark.time {
val diff_set = Seq("col1", "col2", "col3", "col4", "col5", "col6", "col7", "col8", "col9", "col10", "col11", "col12", "col13", "col14", "col15", "col16", "col17", "col18", "col19", "col20", "col21", "col22").toSet
val df = (1 to 1000000).toDF
diff_set.foldLeft(df)((ddf,c) => ddf.withColumn(c,lit(null).cast("string"))).show(false)
}
Using crossJoin
for 1000000
records - Time taken: 13224 ms
spark.time {
val diff_set = Seq("col1", "col2", "col3", "col4", "col5", "col6", "col7", "col8", "col9", "col10", "col11", "col12", "col13", "col14", "col15", "col16", "col17", "col18", "col19", "col20", "col21", "col22").toSet
val df = (1 to 1000000).toDF
val dfb = Seq(("null", "null", "null", "null", "null", "null", "null", "null", "null", "null", "null", "null", "null", "null", "null", "null", "null", "null", "null", "null", "null", "null")).toDF(diff_set.toList:_*)
df.crossJoin(dfb).show(false)
}
Using select
for 1000000
records - Time taken: 8519 ms
spark.time {
val diff_set = Seq("col1", "col2", "col3", "col4", "col5", "col6", "col7", "col8", "col9", "col10", "col11", "col12", "col13", "col14", "col15", "col16", "col17", "col18", "col19", "col20", "col21", "col22").toSet
val df = (1 to 1000000).toDF
df.select(df.columns.map(c => col(c).as(c)) ++ diff_set.map(c => lit(null).cast("string").as(c)):_*).show
}